Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. Alagar, ${ }^{\text {a }}$ K. Rajagopal, ${ }^{\text {b }}$

R. V. Krishnakumar, ${ }^{\text {c }}$
M. Subha Nandhini, ${ }^{\text {d }}$ S. Kannan ${ }^{\text {e }}$ and S. Natarajan ${ }^{\text {d }}$ *
${ }^{\text {a }}$ Department of Physics, Ayya Nadar Janaki Ammal College, Sivakasi 626 123, India,
${ }^{\text {b }}$ Department of Physics, Sraswathi Narayanan College, Madurai 625022 , India, ${ }^{\text {c }}$ Department of Physics, Thiagarajar College, Madurai 625 009, India, ${ }^{\text {d Department of Physics, Madurai }}$ Kamaraj University, Madurai 625 021, India, and ${ }^{\mathrm{e}}$ Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

Correspondence e-mail:
s_natarajan50@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.036$
$w R$ factor $=0.084$
Data-to-parameter ratio $=14.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(1,3-diphenylpropane-1,3-dionato- $\kappa^{2} O, O^{\prime}$)dioxo(triphenylphosphine oxide- κO)uranium(VI)

In the title compound, $\left[\mathrm{UO}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{OP}\right)\right.$] or $\left[\mathrm{UO}_{2}(\mathrm{DBM})_{2}\left(\mathrm{Ph}_{3} \mathrm{PO}\right)\right]$, where DBM is dibenzoyl methanate, the U^{VI} atom is coordinated by seven O atoms in a distorted pentagonal-bipyramidal geometry. The diphenylpropane-1,3dionate system acts as a chelating ligand and coordinates through both of its ketonate O atoms and the triphenyl phosphine oxide ligand coordinates through the O atom. The $\mathrm{U}-\mathrm{O}$ distances range from 1.759 (4) to 2.385 (4) \AA.

Comment

Compounds of uranyl bis(β-diketonates) with neutral donor ligands are of importance for understanding the nature of the species extracted during the solvent-extraction separation of the uranyl ion using mixtures of β-diketones and neutral ligands (Ramakrishna \& Patil, 1984). An increase (or synergism) in solvent extraction separation of uranyl ion from nitric acid medium by using mixtures of β-diketones and phosphine oxides or phosphate has been reported (Irving \& Edgington, 1960; Healy, 1961; Akiba, 1977). The species responsible for the extraction have been isolated in the solid state for some of the systems and characterized by IR (Ferraro \& Healy, 1962), ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR (Subramanian \& Viswanatha, 1969) spectroscopic and elemental analysis methods. In a few cases the material has been characterized using single-crystal X-ray diffraction methods (Taylor \& McLaren, 1979; Lu et al., 1977; Taylor \& Waugh, 1977a,b; Kannan et al., 2001a). In continuation of our work on uranyl bis(β-diketones) with neutral donor ligands (Kannan \& Venugopal, 1995; Kannan, Venugopal, Pillai, Droege \& Barnes, 1996; Kannan, Venugopal, Pillai, Droege, Barnes \& Schlmber, 1996; Kannan et al., 1997, 2001a,b; Kannan \& Ferguson, 1997; Kannan, 2000; Fun et al., 2002; Rajagopal et al., 2002), we report here the structure of $\left[\mathrm{UO}_{2}(\mathrm{DBM})_{2}\left(\mathrm{Ph}_{3} \mathrm{PO}\right)\right]$, (I), where DBM is dibenzoyl methanate.

(I)

The structure of (I) is shown in Fig. 1. Selected bond distances and angles are listed in Table 1. The structure of the molecule shows that the U atom is surrounded by seven O atoms in a pentagonal bipyramidal geometry. Four O atoms of

Received 29 May 2003
Accepted 11 June 2003
Online 30 June 2003

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

Figure 2

The packing of the molecules of (I), viewed down the b axis.

DBM and one O atom of phosphine oxide form a planar pentagon and two uranyl O atoms occupy the apices. The average of $\mathrm{U}-\mathrm{O}_{\text {uranyl }} \quad[1.767(4) \AA]$ and $\mathrm{U}-\mathrm{O}_{\text {DBM }}$ [2.365 (4) A] distances are within the accepted ranges (Taylor \& McLaren, 1979; Kannan, Venugopal, Pillai, Droege \& Barnes, 1996; Kannan, Venugopal, Pillai, Droege, Barnes \& Schlmber, 1996; Kannan et al., 1997, 2000, 2001b). The U$\mathrm{O}(\mathrm{P})$ phosphine oxide distance $[2.375(4) \AA$] is comparable with those reported earlier for uranyl bis(β-diketone)-phosphine adducts (Taylor \& McLaren, 1979; Lu et al., 1977; Kannan et al., 2001a). The overall bond lengths and angles show that the U atom has a distorted pentogonal bipyramidal geometry. In both the DBM ligands, the benzene rings are not
coplanar and they form dihedral angles of 11.9 (4) and $32.9(5)^{\circ}$. Fig. 2 shows the crystal packing of the title compound viewed down the b axis. The structure is stabilized by van der Waals interactions.

Experimental

$\left[\mathrm{UO}_{2}(\mathrm{DBM})_{2}\left(\mathrm{Ph}_{3} \mathrm{PO}\right)\right]$ was prepared by refuxing $\left[\mathrm{UO}_{2}(\mathrm{DBM})_{2^{-}}{ }^{-}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right](300 \mathrm{mg})$ with $\mathrm{Ph}_{3} \mathrm{PO}(112 \mathrm{mg})$ in chloroform for 15 min . The solution was filtered and layered with dodecane. The solution, on slow evaporation, yielded the title compound in 90% yield. Crystals suitable for the X-ray diffraction analyses were obtained from a chloroform/toluene mixture.

Crystal data
$\left[\mathrm{UO}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{1}\right.\right.$
$M_{r}=994.78$
Monoclinic, $P 2_{1} / c$
$a=18.345(2) \AA$
$b=11.022(4) \AA$
$c=20.924(4) \AA$
$\beta=103.170(13)^{\circ} \AA^{\circ}$
$V=4119.5(18) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.325, T_{\text {max }}=0.597$
7464 measured reflections
7221 independent reflections
5259 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.084$
$S=1.29$
7221 reflections
515 parameters
H-atom parameters constrained
$D_{x}=1.604 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10-15^{\circ}$
$\mu=4.03 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular block, orange
$0.30 \times 0.25 \times 0.13 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.023 \\
& \theta_{\max }=25.0^{\circ} \\
& h=0 \rightarrow 21 \\
& k=0 \rightarrow 13 \\
& l=-24 \rightarrow 24 \\
& 2 \text { standard reflections } \\
& \quad \text { frequency: } 60 \mathrm{~min} \\
& \quad \text { intensity decay: }<1 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0316 P)^{2}\right. \\
& +1.9225 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.96 \mathrm{e}^{\mathrm{A}}{ }^{-3} \\
& \Delta \rho_{\min }=-0.92 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.00049 \text { (6) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C7-O3	$1.265(7)$	O2-U1	$1.759(4)$
C9-O4	$1.279(7)$	O3-U1	$2.361(4)$
C22-O5	$1.276(7)$	O4-U1	$2.385(4)$
C24-O6	$1.278(8)$	O5-U1	$2.350(4)$
C36-P1	$1.801(7)$	O6-U1	$2.375(4)$
C42-P1	$1.789(6)$	O7-P1	$1.505(4)$
C48-P1	$1.806(6)$	O7-U1	$2.375(4)$
O1-U1	$1.774(4)$		
C9-C8-C7	$124.9(6)$	O2-U1-O6	$88.20(18)$
C22-C23-C24	$125.0(7)$	O1-U1-O6	$93.28(17)$
O2-U1-O1	$178.51(19)$	O5-U1-O6	$69.91(15)$
O2-U1-O5	$89.82(18)$	O3-U1-O6	$142.29(16)$
O1-U1-O5	$90.56(18)$	O7-U1-O6	$74.26(14)$
O2-U1-O3	$90.97(18)$	O2-U1-O4	$86.51(18)$
O1-U1-O3	$87.77(17)$	O1-U1-O4	$92.30(17)$
O5-U1-O3	$72.39(16)$	O5-U1-O4	$141.31(15)$
O2-U1-O7	$94.22(17)$	O3-U1-O4	$69.19(15)$
O1-U1-O7	$86.32(16)$	O7-U1-O4	$74.90(13)$
O5-U1-O7	$143.79(15)$	O6-U1-O4	$148.20(14)$
O3-U1-O7	$143.29(15)$		

All the H atoms were positioned geometrically and were allowed to ride on their respective parent atoms with SHELXL97 (Sheldrick, 1997) defaults $\left(\mathrm{C}-\mathrm{H}=0.96 \AA\right.$ and $\left.U_{\text {iso }}=0.05 \AA^{2}\right)$ for bond lengths and isotropic displacement parameters.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

SK thanks Dr V. Venugopal, Head, Fuel Chemistry Division, for his support. The other authors thank the UGC for the Special Assistance Programme.

References

Akiba, K. (1977). J. Radioanal. Nucl. Chem. 36, 153-161.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Ferraro, J. R. \& Healy, T. V. (1962). J. Inorg. Nucl. Chem. 24, 1463-1474.
Fun, H.-K., Kannan, S., Usman, A. \& Chantrapromma, S. (2002). Acta Cryst. C58, o368-o370.
Healy, T. V. (1961). J. Inorg. Nucl. Chem. 19, 314-327.
Irving, H. \& Edgington, D. N. (1960). J. Inorg. Nucl. Chem. 15, 158-170.
Kannan, S. (2000). J. Chem. Res. pp. 344-345.
Kannan, S. \& Ferguson, G. (1997). Inorg. Chem. 36, 1724-1725.

Kannan, S., Pillai, M. R. A., Venugopal, V., Droege, P. A. \& Barnes, C. L. (1997). Inorg. Chim. Acta, 254, 113-117.

Kannan, S., Shunmugasundararaj, S. \& Fun, H.-K. (2000). Acta Cryst. C56, e545-546.
Kannan, S., Shunmugasundararaj, S. \& Fun, H.-K. (2001a). J. Chem. Res. pp. 50-51.
Kannan, S., Shunmugasundararaj, S. \& Fun, H.-K. (2001b). Polyhedron, 20, 2145-2150.
Kannan, S. \& Venugopal, V. (1995). Polyhedron, 14, 2349-2354.
Kannan, S., Venugopal, V., Pillai, M. R. A., Droege, P. A. \& Barnes, C. L. (1996). Polyhedron, 15, 97-101.

Kannan, S., Venugopal, V., Pillai, M. R. A., Droege, P. A., Barnes, C. L. \& Schlemper, E. O. (1996). Polyhedron, 15, 465-471.
Lu, T. H., Lee, T. J., Lee, T. Y. \& Wong, C. (1977). Inorg. Nucl. Chem. Lett. 13, 363-365.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rajagopal, K., Krishnakumar, R. V., Subha Nandhini, M., Kannan, S. \& Natarajan, S. (2002). Acta Cryst. E58, m316-m318.
Ramakrishna, V. V. \& Patil, S. K. (1984). Structure Bonding, 56, 35-90.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON for Windows. Utrecht University, The Netherlands.
Subramanian, M. S. \& Viswanatha, A. (1969). J. Inorg. Nucl. Chem. 31, 25752585.

Taylor, J. C. \& McLaren, A. B. (1979). J. Chem. Soc. Dalton Trans. pp. 460-464.
Taylor, J. C. \& Waugh, A. B. (1977a). J. Chem. Soc. Dalton Trans. pp. 16301636.

Taylor, J. C. \& Waugh, A. B. (1977b). J. Chem. Soc. Dalton Trans. pp. 16361640.

